White Papers
The Importance of Process Validation in Additive Manufacturing
The Importance of Process Validation in Additive Manufacturing

Precision ADM and EOS

This paper explains the importance of achieving a process validation for AM, the process by which Precision ADM used to do so, the results of various tensile and density tests, as well as showing the complexities and hurdles that need to be overcome.

    I agree to receive the latest news from Precision ADM


    Additive Manufacturing of Customized Medical Devices

    Precision ADM and the Orthopaedic Innovation Centre

    The purpose of this project was to manufacture prototypes of the Surface-Guided Knee for testing on a simulator machine for kinematic validation.

    The unique, patient-optimized shape of the knee lends itself to the flexibility of additive manufacturing in contrast to traditional manufacturing where deviating from set designs is penalized with high costs of production.

      I agree to receive the latest news from Precision ADM


      Conformal Cooling Mold for “Venturi Cup”

      Precision ADM and Melet Plastics Inc.

      A warping defect was reported in the production of a “Venturi Cup” part manufactured by Melet Plastics Inc. for use in an AGCO-Amity JV air seeder. The customer requested a reduction in the warping seen in the large rectangular section of the part.

      Proposed alterations included changes in material, wall thickness and coolant temperature, as well as an optimized mold for cooling produced by Precision ADM using additive manufacturing methods. The use of the optimized mold together with a decrease in wall thickness resulted in a warpage reduction of 42%; an overall warpage reduction of 54% was achieved with all other alterations included.

        I agree to receive the latest news from Precision ADM


        Titanium Topology Optimized “TiTO™” 3D Printed Satellite Panel Support System

        Precision ADM

        Precision ADM developed a “TiTO™” (Titanium Topology Optimized) Aerospace Panel Support Structure. The purpose of the project was to use topology optimization to redesign and replace a machined aluminum mount for supporting loads from a large panel and its cable management. The goal was to optimize the structural geometry to be light-weight, while maximizing its stiffness using a material that has a low coefficient of thermal expansion. Design for Additive Manufacturing (DFAM) principles were applied so the resulting design configuration could be built using Direct Metal Laser Sintering (DMLS) with minimal post-processing or machining.

          I agree to receive the latest news from Precision ADM

          Interested in the benefits of Metal Additive Manufacturing? Let’s partner on your next project!